Role of DNA minor groove interactions in substrate recognition by the M.SinI and M.EcoRII DNA (cytosine-5) methyltransferases.
نویسندگان
چکیده
The SinI and EcoRII DNA methyltransferases recognize sequences (GG(A)/(T)CC and CC(A)/(T)GG, respectively), which are characterized by an (A)/(T) ambiguity. Recognition of the A.T and T.A base pair was studied by in vitro methyltransferase assays using oligonucleotide substrates containing a hypoxanthine.C base pair in the central position of the recognition sequence. Both enzymes methylated the substituted oligonucleotide with an efficiency that was comparable to methylation of the canonical substrate. These observations indicate that M.SinI and M.EcoRII discriminate between their canonical recognition site and the site containing a G.C or a C.G base pair in the center of the recognition sequence (GG(G)/(C)CC and CC(G)/(C)GG, respectively) by interaction(s) in the DNA minor groove. M.SinI mutants displaying a decreased capacity to discriminate between the GG(A)/(T)CC and GG(G)/(C)CC sequences were isolated by random mutagenesis and selection for the relaxed specificity phenotype. These mutations led to amino acid substitutions outside the variable region, previously thought to be the sole determinant of sequence specificity. These observations indicate that (A)/(T) versus (G)/(C) discrimination is mediated by interactions between the large domain of the methyltransferase and the minor groove surface of the DNA.
منابع مشابه
DNA bending induced by DNA (cytosine-5) methyltransferases.
DNA bending induced by six DNA (cytosine-5) methyltransferases was studied using circular permutation gel mobility shift assay. The following bend angles were obtained: M.BSP:RI (GG(m5)CC), 46-50 degrees; M.HAE:III (GG(m5)CC), 40-43 degrees; M.SIN:I (GGW(m5)CC), 34-37 degrees; M.SAU:96I (GGN(m5)CC), 52-57 degrees; M.HPA:II (C(m5)CGG), 30 degrees; and M.HHA:I (G(m5)CGC), 13 degrees. M. HAE:III w...
متن کاملSymmetry elements in DNA structure important for recognition/methylation by DNA [amino]-methyltransferases.
The phage T4Dam and EcoDam DNA-[adenine-N6] methyltransferases (MTases) methylate GATC palindromic sequences, while the BamHI DNA-[cytosine-N4] MTase methylates the GGATCC palindrome (which contains GATC) at the internal cytosine residue. We compared the ability of these enzymes to interact productively with defective duplexes in which individual elements were deleted on one chain. A sharp decr...
متن کاملFootprint analysis of the bsp RI DNA methyltransferase-DNA interaction.
The interaction between the GGCC-specific Bsp RI DNA methyltransferase (M. Bsp RI) and substrate DNA was studied with footprinting techniques using a DNA fragment that was unmodified on both strands. Footprinting with DNase I revealed an approximately 14 bp protected region. Footprinting with dimethylsulfate detected major groove interactions with the guanine bases of the recognition sequence. ...
متن کاملMetadynamics Simulation Study on the Conformational Transformation of HhaI Methyltransferase: An Induced-Fit Base-Flipping Hypothesis
DNA methyltransferases play crucial roles in establishing and maintenance of DNA methylation, which is an important epigenetic mark. Flipping the target cytosine out of the DNA helical stack and into the active site of protein provides DNA methyltransferases with an opportunity to access and modify the genetic information hidden in DNA. To investigate the conversion process of base flipping in ...
متن کاملA MODEL FOR THE BASIC HELIX- LOOPHELIX MOTIF AND ITS SEQUENCE SPECIFIC RECOGNITION OF DNA
A three dimensional model of the basic Helix-Loop-Helix motif and its sequence specific recognition of DNA is described. The basic-helix I is modeled as a continuous ?-helix because no ?-helix breaking residue is found between the basic region and the first helix. When the basic region of the two peptide monomers are aligned in the successive major groove of the cognate DNA, the hydrophobi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 29 15 شماره
صفحات -
تاریخ انتشار 2001